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A new histogram approach for calculating the electronic or vibrational spectra of 
crystals is introduced which does not require the elaborate root-searching procedures of 
Gilat and his co-workers. The spectra are obtained by numerically computing the area 
between curves of constant x, x denoting either the frequency variable v*, or energy 
variable E, which are found from a dispersion relation f(+, x) = 0, # being the wave 
vector in the first Brillouin zone. This relation dehnes a hypersurface S of possible states 
in the space of possible pairs (4, x) of wave vectors and values of x. The technique is no 
less accurate at points where the surface becomes flat, i.e., at maxima, minima, and 
saddles and yields quite accurate representations of the van Hove singularities. Around 
any particular value of x the spacing and, if desirable, the number of points on the 
contours can be refined without increasing the computational time by hoer calculations 
where they are clearly unnecessary. Since no root searching in x is required, this method 
is completely general and is not highly constrained by crystal symmetry types. Thus, 
very complicated dispersion relations in x can be handled. The technique is illustrated by 
computing the spectra of a 2-D vibrational and electronic system. Results for several 
3-D vibrational and electronic systems have been obtained and are in good agreement 
with previous analytic calculations where these exist. 

I. PROBLEM AND TECHNIQUES 

Two basic equations which characterize many phenomena in continuous media 
are the wave equation, 

a2f - = cvf, at2 

which describes a wave propagating with velocity c in the medium, and the diffusion 
(or heat conduction) equation, 

af - = DV2f, at (2) 

which appears for processes involving dissipation. 

*Work partially supported by Grant No. GU-4040 of the National Science Foundation. 
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2 POSTON AND BUDGOR 

In the transition from the continuum to a discrete medium similar equations 
arise, but they involve second differences rather than V2. The subsequent discussion 
will concentrate on two network models of crystalline solids inspired by the ball 
and wire models constructed by crystallographers. Thus, if we wish to discuss the 
vibrations of crystal lattices the wires connecting the balls representing atoms are 
replaced by springs and Eq. (1) is replaced by its analogous differential-difference 
equation. There is a similar substitution for Eq. (2) when we wish to consider the 
dynamics or kinematics of electrons on a lattice. Here we assume that the electrons 
are restricted to move only along the wires, or bonds, connecting atoms. 

The determination of the vibrational and electronic properties of these model 
crystals has been exhaustively discussed by Maradudin et al. and by Montroll and 
his co-workers, respectively, with the unifying characteristic that the allowed 
vibrational and electronic band structures are derivable from the determinantal 
solution of the dynamical or connectivity matrix, M&b and Mei [l, 2, 31. 

To determine the vibronic and thermodynamic functions for a crystal one must 
know how the frequencies of lattice vibrations and the electronic energy states are 
distributed in frequency and energy space, respectively. In the case of a finite 
crystal with N atoms and periodic boundary conditions, this means knowing how 
many of the finite set of possible wave vectors 4 in the first Brillouin zone have 

FIG. la. The hypersurface S of possible vibrational states in the case of a 2-D square lattice 
having nearest- and next-nearest neighbor interactions. 
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states lying between x and x + Ax (x denoting either the frequency variable, v2, or 
energy variable E). In the limit as N goes to infinity, we have an equation (the 
dispersion reltztion) of the form f(+, x) = 0, defining a hypersurface S of possible 
states in the space of possible pairs (4, x) of wave vectors and values of x. The 
number of vectors having states between x and x + Ax must now be replaced 
by a measure, this being ordinary area in the space of vectors in the first Brillouin 
zone, or other convenient period in +-space. Taking the limit as Ax + 0 gives the 
“density of states function” or spectrum g(x) at x. 

In vibrational problems the dispersion relation det(&ib) = 0 gives an eigenvalue 
problem in v2, and since &ib is self-adjoint the hypersurface S can be considered 
as a multibranched function of 4. This is illustrated in Fig. la in the case of a 
2-D square lattice having nearest- and next-nearest neighbor interactions, with 4 
lying in [0, 7~1 x [0, ~1; the rest of the surface is given by reflection in the d1 - v2 
and +2 - v2 planes and translation by 2m in the & and +2 directions. (Such an 
explicit separation into branches is fundamental to the exact solution techniques 
for g in use and severely restricts the rank of h&b if such analysis is to be possible.) 
Figures lb and lc show the corresponding contour maps and spectra. Spectrum 
singularities arise from points at which the surface considered is parallel to the 
+-plane, generally maxima, minima, and saddles. Non-Morse-type singularities 
can occur when stabilized by the symmetries of the problem. (See van Hove [4] and 
Montroll [5] for a discussion of the relevant applications of Morse theory and the 
classification of the corresponding singularities in g.) The distinction between the 
branches has physical significance and makes the separate computation of the 
branch spectra, as illustrated, useful. 

In electronic problems E enters Mel nonlinearly, and is not restricted to the 
diagonal. Geometrically, then, S cannot with any naturalness be considered as a 
branched function. Figures 2a and 2b show a contour map and perspective drawing 
for a typical case. 

From 1912, when Born and von Karman [6] first derived an expression for the 
frequency distribution of one-dimensional lattice vibrations, much effort has gone 
into determining g for a variety of crystal symmetries. Several exact 2-D and 3-D 
calculations have been performed for crystals with special symmetries. However, 
their difficulty increases rapidly with realism of the model. For example, while the 
determination of g(v2) for a 2-D square lattice with anisotropic nearest-neighbor 
interactions is comparatively straightforward [5], with the introduction of next- 
nearest-neighbor forces [7] even the case with isotropic nearest neighbors requires 
T = l/[l + (2&)] = 5 for an exact solution to be possible (a and y are nearest- 
and next-nearest-neighbor force constants, respectively). Only qualitative results 
are given for T # 8, and anisotropy in nearest neighbors is not considered. Thus in 
most realistic cases, numerical techniques must be used. 

Due to the recent nature of the electrons on a network model the only approxi- 
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FIG. 2a. Typical contour map derived from an electronic dispersion relation which is a 
sixth-order polynomial equation in an awkward function of E, with coefficients depending on 4. 
The numbers at the sides of the square identify the value of E for each contour. 

mate spectrum calculations that have been performed are for lattice vibrations, of 
which the most accurate and conceptually the simplest is the root sampling method. 
Here the secular equation is solved at a large number of uniformly distributed 
points in the first Brillouin zone and the spectrum approximated by a normalized 
histogram. 

The disadvantages of this technique are: 

(i) For accuracy, a very large number of points are required. 
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FIG. 2b. Perspective drawing of the surface whose contour map is Fig. 2a. 

(ii) The technique is least accurate at the most important values of y2, the 
singularities of g. 

(iii) Improvement of accuracy at any one frequency level requires the same 
refinement everywhere. 

(iv) Each crystal symmetry type essentially requires the development of a new, 
highly complex program. The best of these are due to Gilat and his co-workers [S, 91 
and use a linear approximation around each value of 4. This reduces the amount 
of root-searching, and cost, but greatly elaborates the program. Moreover it 
requires the gradient vector of each vi2 at 4, which often is not easily obtainable in 
analytic form and thus may necessitate a risky numerical differentiation. 

Our technique is suggested by the method of studying singularities developed in 
Woodcock and Poston [lo], with a similar method developed by Faulkner et al. 
[22]. We describe it first for a 2-D lattice. Instead of calculating x for given 4, we 
fix successive values of x and compute one component of 4 in terms of the other. 
This yields the fixed-x contours of the surface. The area between the x and (x + Ax) 
contours projected to d-space is exactly 

s X+dz g dx, z (3) 
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so that numerical calculation of this area gives a very good histogram value for g. 
Recall that in the usual technique for computing area between curves, a local linear 
approximation is automatic, with no gradient calculations necessary. This is 
illustrated in Fig. 3, where the number obtained by adding the distances 

I u(x + 6% 4 - Ax, Zi>l 

is proportional to the sum of the areas of the illustrated parallelograms. 

FIG. 3. Technique used to compute the area between contours. 

In a 3-D problem this approach is repeated for a set of parallel slices of +-space 
and uses a similar automatic local linear approximation with the resulting histo- 
gram values for g added. Results for several 3-D vibrational and electronic systems 
have been obtained and are in good agreement with previous analytic calculations 
where these exist. This work will be reported in [l 11. 

An added feature of this technique is that it makes no appeal to the view of S as a 
branched function. In fact while lack of a neat branch structure complicates earlier 
approaches, it simplifies this one, since to distinguish between branches can be 
quite complicated and costly. The results are in no way less accurate at singularities 
than elsewhere (subject to the essential nature of any histogram, which must 
necessarily miss the full height of a “spike” singularity.) Around any energy or 
frequency level of special interest, the spacing and, if desirable, the number of 
points on the contours can be refined without increasing the computational time by 
finer calculations where they are clearly unnecessary. The special symmetries of a 
particular problem can be taken advantage of by minor alterations in programming, 
rather than the fundamental alterations needed in root-sampling techniques when 
extending applicability from the cubic crystals to crystals of other symmetries, 
such as hexagonal and tetragonal [23,24]. This is due to the fact that the starting 
point for our spectrum calculations is the expansion of the determinant of L&b or 
Mel with subsequent rearrangement of terms to obtain a polynomial in the cosine 
of one of the reciprocal lattice vectors. The coefficients of this polynomial are 
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functions of the remaining reciprocal lattice vectors and X. Changing the symmetry 
of the problem just means obtaining a new polynomial equation from &b or Mel . 
The subsequent procedure for calculating g(x) remains the same. Thus, the method 
is far more easily adaptable from one problem to another. 

The degree of simplicity of this approach depends on the ease with which &, 
say, can be obtained from the variables +1 , 43 , and x in the dispersion relation to 
give the contours. A typical electronic network model under study gives a sixth- 
order polynomial equation in an awkward function of E, with coefficients depending 
on 4. Due to the noneigenvalue nature of this model, root-searching in E would 
require immense computations with great difficulty attaching to the differentiation 
needed for any local linear approximation, but the cosine of one component of 4 
may be expressible as an explicit function of E and the cosines of the other two. 
Evaluating high-order polynomials is easier than solving them. 

As long as the order of the equation is lower in at least one cos(& than in x, it 
is easier to find contours in & than roots in X. Even if the equation becomes 
awkward enough to require root-searching in finding the contours, however, this 
method still does not become as cumbersome as root-sampling because the local 
linear approximation remains automatic and therefore neither an immensely fine 
mesh nor computations of the gradient of a high-order implicitly defined multi- 
valued function are required. Moreover, refinement around a given value of x 
remains easy. An entirely general program is under development whose use will 
vary from problem to problem only in the specification of Mvib or Mel, and in the 
method used for finding $i given (di , & , x) which may be obtained from explicit 
formulas, polynomial solution, or root-searching. 

One final note in passing is that this technique is directly applicable to the 
methods now in use in computing the electron band structure of solids (cf. the 
tight binding and augmented plane wave methods [12]). Invariably, since the 
energy bands are determined from the solution of a secular equation in E, the same 
procedure in obtaining g for the vibrating crystal can be used. 

An essential part of the development of this technique has been the use of com- 
puter plotting of the contours: however complex a surface (e.g., Fig. 2b) the 
corresponding contour map (Fig. 2a) suffices to describe it. This gives both a check 
on whether the area computation routine is correct, since the areas are visible and 
the singularities identifiable for comparison with the output for g, and a check on 
whether the spacing of x values is sufficiently fine. (If one contour is on one branch 
of the surface, and the next one on another, significant error is introduced unless 
the spacing is fine enough to bring at least one of them close to the edge of the map. 
Thus, at energy or frequency levels where the contours are very far apart it may be 
appropriate to locally refine the spacing in x.) 
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II. A VIBRATIONAL EXAMPLE 

Consider the 2-D monatomic square lattice of Fig. 4, where we have identified 
lattice coordinates by the double (I, m) with each parameter ranging over the 
integral values -N/2 to N/2, and the components of the atomic displacements from 
their equilibrium positions by ulSm. and v~,~ . 

FIG 4. 2-D monatomic square lattice where LX, fl, and y are the nearest- and next-nearest 
neighbor coupling constants, 

By assuming the existence of central forces only, the total potential energy of the 
system can be written in terms of a quadratic form in the displacements from 
equilibrium, 

W 

C(Q) being a function of the equilibrium distance between the ith andjth atoms. If 
we further assume that the interatomic forces are sufficiently short-ranged that their 
influence is only significant up to next-nearest neighbors, but such that the nearest- 
neighbor coupling constants in the u and ZJ directions are different, V(r, ,..., rN) in 
terms of its components ~r,~ and u~,~ may be rewritten as 

+ rK%m - &+1,m+1 + %m - vz+l.m+32 
+ (%a - ~z+l.m-1 - %m + ~c+1.m-3211, (4b) 

01, /3, y being the nearest- and next-nearest-neighbor coupling constants. 
Application of Lagrange’s equations then leads to the following equations of 

motion, 

--M&,, = 42%,m - ~2+1.m - %-I,3 

+ Y(4+n - ~z+1.m+1 - R+l,m-1 

- kum-1 - Uz--l.m+1 - ~z+1.m+1 

-I-v 2+1.m-1 - VI-m-1 + vz-m+3r (54 
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and 

--M&n = B@Jl*?n - vZ.m+l - VZ.rn-I) 

+ y(4%?z - vz+1.m+1 - VI-l.rnCl 

- VI-l.nz-1 - Vz+l.m-1 - Uz+1,m+1 

+ uz--l.m+1 - uz-1.77-l + ~z+m-3. (5'3 

In the limit as N+ cc one would expect that the nature of the vibrations is 
independent of surface effects. For convenience, then, let us impose Born- 
von Karman periodic boundary conditions 

Uz.N+l = ~2.1 3 UN+l.m = %.m 9 
(6) 

vZ.N+l = vZ.l 3 uN+l.m = hn . 

Equations (5) may then be solved by assuming the particular periodic solutions 

U - u’ exp i(2nvt + 14, + m&), z,m - (74 

vz,m = v’ exp i(2?rvt + @I + m&J. O’b) 

where the 4.j = 2raj/N (j = 1,2) are the phase differences for successive atoms, 
N/2 < aj < N/2, and v is the frequency of vibration corresponding to a particular 
solution. Substitution of (7) into (5) then yields, 

-4M7rVu’ + 2cLu’(l - cos 41) + 4yu’(l - cos $51 cos 4,) 
+ 4yv’ sin C#~ sin & = 0, @a) 

-4M7TVW + 2@‘(1 - cos 42) + 4yv’(l - cos & cos d2) 
+ 4yu’ sin I$~ sin $2 = 0. VW 

To obtain a consistent solution of these coupled equations the determinant of the 
coefficients of u’ and v’ must vanish: 

A, - 47r2v2M B 
B A2 - 4i=r2v2M = i 0, 

where 

and 

A, = 2a(l - cm 41) + 4y(1 - cos & cos +,), 

A2 = WC1 - cm 42) + 4y(1 - cos & cos +2), 

B = 4y sin I$~ sin $2 . 



12 POSTON AND BUDGOR 



GEOMETRY AND CRYSTAL SPECTRA 13 



14 POSTON AND BUDGOR 

2 

II 
w 

+ 



GEOMETRY AND CRYSTAL SPECTRA 

L 

15 

581/19/1-z 



16 POSTON AND BUDGOR 

8 w ; i 



GEOMETRY AND CRYSTAL, SPECTRA 17 

Denoting the degree of anisotropy by the ratio o@ = E such that 0 < E Q 1, 
the largest frequency, vL , corresponding to the extremum of (9) is 

VL = [(4p + 8y)/47r2M]1/2. (11) 

By further defining 

T = 8y/4rr2MvL2 = l/[l + (/3/2y)], (124 

Cj = COS #j 3 W) 
f= VIVL, uw 

(9) expanded becomes a polynomial in c2 , 

ac22 + bc, + d = 0, 

where 
(13) 

a = r2 + ~(1 - T) c1 , 

b = [l - ~][2j~ - T - ~(1 - T)] + c,[47f2 - 2~~ 

+ C,%T(l - T), 

W) 
- - (1 - T)(T + E(2T - l))] 

(14b) 

d = 4f2(f2 - 1) - ~(1 - 7)(2f2 - 1) + (1 - T)(T + 2f3 

+ CIE(l - T)(2f2 - 1) + C12T2. (14c) 

The determinant (9) is, of course, also a quadratic equation in v2 with real solutions 
for all relevant c1 and c2 . Thus there are two distinct branches (shown in Fig. la, 
for 7 near & and E near 1). It is therefore appropriate to compute their spectra 
separately. This complicates the routine somewhat, since the choice of “+” or 
“ 99 * - m the solution of (13) for c2 corresponds in no simple way to the choice for 
v2 in (9), and a decision routine must be added. 

Figures 1 and 4 show contour maps and vibrational spectra g for + and - 
frequency branches with various values of T and E. The case 7 = 5, E = 1 cor- 
responds to the case analytically solved by Montroll[7], and his analytic results are 
included for comparison (Figs. 5c, d). 

The relation between the contours, the geometry of the surface they belong to, 
and the spectrum should be clarified by reference to Figs. la-c. In two dimensions 
a smooth local extremum (such as those at A, B, C) gives a jump discontinuity in g 
(though no jump in dg/df). The nondifferentiable minimum at 0 of each branch is 
tangential to a cone at 0, giving a linear increase from zero. 

D, E, F, G, H are saddle singularities: recall that the surfaces extend to cover all 
&space by reflections in the planes +I = nr, & = 12rr. As f approaches a local 
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extremum, the lengths of neighboring contours decrease as the flatness of the 
surface increases their separation. This accounts for the local contribution to 
g, the area between contours flattening toward a constant before vanishing. Toward 
a saddle, both increase, and g has a logarithmic singularity. 

If two singularities are not separated by more than one or two contours (as 
D, E and G, Hare not), a finer spacing of energy values may be needed to separate 
them clearly in the spectrum. 

Note that Fig. 5a has a complicated saddle in the upper right corner. This is not 
a Morse singularity, but is stable with respect to variations that preserve the high 
degree of symmetry at that point. If e becomes # 1, it bifurcates into two minima 
and five normal saddles (Figs. lb, 5b); if T increases past + and E remains 1, it 
bifurcates into one minimum and four normal saddles (Figs. 5c, e). These illustrate 
the fact that for index theorem purposes [21] it is equivalent to three normal 
saddles (2 - 5 = 1 - 4 = -3). 

III. AN ELECTRONIC EXAMPLE 

The electronic states of solids are theoretically treated by two zero-order approxi- 
mations, one being the very localized Heitler-London method and the other being 
the extremely delocalized Bloch model. Molecular and ionic crystals have low-lying 
excited states and are therefore best described in terms of their component free 
molecules or ions. Metals and semiconductors lie on the other side of the spectrum, 
however, and have free-electron-like wavefunctions. During the past 35 years a 
molecular approach, the free electron orbital method (FEMO) has been developed 
to describe the electronic properties of matter in a simple way. In this model U- 
electrons are restricted to move along the bonds of a planar conjugated system 
under the influence of a potential field which is, in first approximation, constant. 
Pauling [13] first used this description to explain the diamagnetism of aromatic 
molecules, Schmidt [14] generalized it further by thinking of the conjugated 
system as a large flat box, analogous to the 2-dimensional model of graphite, 
containing a Fermi gas of n-electrons, while Della Riccia [15] employed it in 
computing the band structure of diamond. Ruedenberg and Scherr [16] and Platt 
[17] have also used this model in their discussions of the ultraviolet spectra for a 
variety of ring structure organic molecules and for hydrocarbon chains with 
conjugated double bonds. Recently a nework model of electrons in solids has been 
introduced by Montroll [2] in which the electrons are restricted by nonconstant 
potential fields to move along the bonds of a periodic network of atoms. The 
network is given the same topological pattern with the same lattice spacings that 
would represent its crystallographic characterization. The two basic features of 
FEMO are incorporated in this model, that is, 
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(i) the wavefunction is continuous along all branches of the network and at 
the node points, 

(ii) the net current flowing away from any node point must vanish. 

It should be noted that the first condition only holds true for atoms with dimensions 
of measure zero, i.e., atoms represented as points. Condition (ii) has the flavor of 
a “Kirchhoff”-like current law. It can be shown that in the stationary state the 
momentum conservation condition (ii) has, for an arbitrary potential V(x), the 
form 

(15) 

where the sum is taken over all nearest-neighbor points j, to j. The energy band 
structure is then obtained by invoking into (15) the appropriate periodic boundary 
conditions which correspond to the translational symmetry of the lattice. As an 
illustration, the band structure for a d-dimensional, 1 < d < 3, S.C.C. lattice 
having bond length I is found from the form factor equation 

(16) 

where the functional form of F(k, o) is potential dependent. For convenience we 
choose as our atomic potential 

V(x) = - V,, sechs Yx, (174 

since this has the property that as the depth of the potential becomes large, one 
obtains a tight binding situation and as the potential vanishes and the number of 
node points increases, one obtains the Sommerfeld free electron model. y may be 
thought of as a force constant and when expressing V,, as 

one finds that the wavefunctions, for positive integral values of r, are elementary 
functions. For example, when r = 1, 

4(x) = a[cos(kx + 6) - (r/k) sin&x + 6) tanh yx], (18) 

a, 8 being the constants of integration of the Schrodinger equation and where k is 
related to the energy levels by k2 = 2mElfie. P(k, o) is then 

(Ca - s2 + cu - su)l(l + cu + so), (19) 
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tan 0(x) = (y/k) tanh ‘yx, with -7r < 6(x) < 37, (204 
8 = 8(1/2), (2W 

c = cos[(kl/2) + e], cw 

s = sin[(kl/2) + 01, (204 

u = (~/k)~ cos 0 sech2 (y1/2) cos(kZ/2), (2W 

u = (~/k)~ cos 0 sech2(y1/2) sin(kl/2), Wf ) 

and 
01 = 912. Gw 

For k real, Eq. (2) will determine the allowable conduction band states while for k 
imaginary it will determine the bound state band structure. 

For the purpose of further discussion it will be advantageous to express the 
current condition (15) in terms of the wavefunction in (18). We consider the 
schematic representation of a bond of length I connecting nodes i andj, 

i x . , 
J 

with the x denoting the midpoint of the bond. The wavefunction, t,b(i), associated 
with the atom at i must connect at the x in a continuous manner with the wave- 
function, #(j), associated with the atom atj. Thus, since 

a)(O) = a cos 6, 

-#‘(WW9 = --k[l + (y/k)2l tan 6, 

0 referring to some origin, i orj, one finds that at the midpoint l/2, 

#(l/2) = #(i) c0qe + (kZ/2) + S,,]/cos &j ) 

$442) = #(j> CO@ f (ky2) - ~&OS 6ji , 

a,, representing the phase factor going from m to n. 
Equating these two we derive 

$(i)[c - s tan &] - #(j)[c + s tan &] = 0. 

In a similar manner, if we equate the two derivatives at x, we find 

#(i)[(c + U) tan &j + S + V] - #(j)[(C + u) tan Sji - s - v] = 0. 

Pa) 
(22’4 

(23) 

(24) 
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Eliminating the phase factor aji from Eqs. (23) and (24) leads to the relationship 
for tan & , 

#(j) (1 + cu + sv) _ (c” - s2 + cu - so) -tan ~3~~ = - 
J)(i) WC + 4 2s(c + 24) . (25) 

Summing (25) over all bonds connected to node i we see, from inspection of (21b), 
that the current conservation condition is 

- C k(1 + (y/Q2) tan aif1, = 0. 

In the limit as y -+ 0, i.e., the free electron case, (26a) becomes 

- 1 k tan Sij, = 0. 
P 

(26b.l 

In the following section we shall construct a network model of a 2-dimensional 
polyethylene crystal. From its dispersion relation we then calculate the density of 
states both analytically and with this histogram method. 

IV. A MODEL “POLYETHYLENE" CRYSTAL 

Due to its chemical simplicity all normally produced specimens of polyethylene 
are highly crystalline, having space group Pnam and containing four CH, mono- 
mers per unit cell. The unit cell dimensions for cold drawn threads and for rolled 
sheets are variable depending on the amount of methyl branching that occurs. The 
more branching within the crystallite the larger the spacing between molecular 
chains, which consequently results in unit cell expansion. Along the fiber axis the 
repeat distance c is the repeat distance along a planar zig-zag chain of singly bound 
carbon atoms with normal bond angles and bond lengths. The a and b dimensions 
characterize the side-by-side packing of the chains. Thus, the unit cell lattice 
parameters have values c = 2.534 A, a = 7.36 A-7.68 A, and b = 4.94 &5.00 A. 
The molecular packing in a unit cell is shown in Fig. 6 [18, 19,201. For this 
particular calculation we shall only be concerned with toroidal sheets of skeletal 
polyethylene molecules (hydrogen atoms are not included) arranged as in Fig. 7 [3]. 
For simplicity, the translational symmetry is presumed to be two-dimensional 
simple cubic. Thus, there are t\ko carbon atoms per unit cell. The electrons are 
constrained to move only along the “bonds” of the system and in such a way that 
within a chain the atomic potential, V(x), is set at zero and between chains as 
V(x) = -(y2vZz/m) sech2 yx. The electron must therefore tunnel through a poten- 
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FIG. 6. Arrangement of molecules in polyethylene crystallites. From Meares [18]. 

FIG. 7. Model of 2-D “Polyethylene.” No potential exists along the solid bonds. A Potential 
.of the form V(x) = - V, sech 9x exists along the dotted bonds. 

,tial barrier of half-width y-1 tar&-l (0.5) in order to traverse the interchain bond 
distance of 1. 

By utilizing the phase relations (26a) and (26b), the former along the polyethylene 
chain and the latter between.chains, and the current conservation condition at the 
node points we obtain the set of coupled equations 

Zl4Jloh t %J - Mh , %I - &4(n, - 1, nB) 
- p<t!Qh - 1, n, - 1) + &[nl , n, - 1)) = 0, 

(27) 

where &(nI , II,), i = 1,2, is.the wavefunction of atoms 1 and 2 located at the unit 
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cell coordinates (n, , n2), and where z1 and ~1 are energy functions, respectively 
deGned as 

z, = sin kl[(l + (r/Qz)((c2 - s2 + cu - su)/2s(c + 24)) + cfn kl], (28a) 
p = sin kZ(1 + ($)3(1 + cu + 4/2s(c + 24). Wb) 

Employing the cyclic boundary conditions 

where iVI , N2 are the total number of unit cells in the n, and n2 directions, respec- 
tively, one can represent & and #2 as 

AI, A2 being normalization constants. 
The solution to this set of coupled equations is found by setting the determinant 

of the coefficients of (27) to zero, i.e., det iI& = 0, and becomes 

2Z12 = (1 + cos &)(p2 + 2p cos q52 + 1). (31) 

This equation determines the energy band structure of the system. 
The density of states corresponding to the dispersion relation (31) can be found 

analytically from 

(32) 

where N(E) is the total integrated area between the curves of constant energy from 
E’ and some maximum value E in I#~ - d2 space (reduced Brillouin zone). 

Thus, from (31) 

(33) 

(344 D(E) = I & Jg, cos-l ( (p2 + 2p2:: $b2 + 1) - 1) d+a I 

=kalJ (p2+2p cos 4a+ 1)(4-W 2z,-z,(dldk)(p2+2p cos #,+ 1) d+, 
(p2 + 2p cos de + l)[pZ + 2p cos $h2 + 1 - z1y2 I ’ 

Wb) 
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where 
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dz,- dz, dE 
dk 

---=- 
dE dk d; (p ; + cos kf) $- . (34c) 

The derivative functions in E are given in the Appendix. Since +r and & are both 
symmetric around 0 we need only restrict ourselves to an integration over one 
quadrant of the reduced Brillouin zone, that is, when 0 < C$~ < rr and 0 < & < r. 
From closer inspection of the dispersion relation contribution to the integral in 
(34b) arises only when 

-1 < [2.Q/(p2 + 2p cos 42 + 111 - 

ENERGY 
aa 

1 < 1. (35) 

FIG. 8. Density of states for 2-D “Polyethylene” model obtained by analytically evaluating 
(34b) when a = g. DPK stands for density of conduction band states and DSE stands for density 
of bound state band states. The very rough look to DSE is a result of a much finer E mesh than 
was used for DPK. 
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Figure 8 exhibits D(E) when 01 = y1/2 = 4. This spectrum incorporates the fact 
that due to the Pauli Exclusion Principle for Fermi particles D(E) must be multiplied 
by a factor of 2. 

The contour map in +I - & space corresponding to the dispersion relation (31) 
is given in Fig. 9a. From the energy contours it is clear that due to energy splitting 
between the two atoms in the polyethylene unit we are dealing with two surfaces in 
each of two bands with the division in bands occurring between contours 93 and 94 
and corresponds to the beginning of the first excited state band. The ground state 
energy band begins between energies -0.5 and -0.55. The four singularities 
correspond to saddles located between contours 22 and 23,33 and 34,102 and 103, 
and 103 and 104. Agreement with the analytical D(E) result is excellent (Fig. 9b). 

‘k?&ez Kcz$! &=%3 %%a s&q ;a m L+lz-s et; ZE %! “L”S Is3 z “v I r42 d 

$1 

FIG. 9a. Contour map corresponding to the dispersion relation (31). 
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Q.0 LO 2,o. 3.0. b,O 5,o. 

Iltmmx 

FIG. 9b. Density of states obtained from the energy contours in Fig. 9a. 

V. COMPUTATIONAL DATA 

In obtaining each of the spectra in Figs. lb, lc, and 5, for each of 101 values of 
f2, 0 <f” < 1, & was varied between 0 and n in 101 increments. The total com- 
putational time on an IBM 360-65 was approximately 43 sec. 

For the electronic spectra in Figs. 8 and 9b the energy grid varied between 
-0.6 and 5.0. In doing the analytic computation (Fig. 9a) we subdivided the 
energy ranges [-0.6,0] and [O., 5.01 into 101 segments each. The integral in (34b) 
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was then evaluated by using Simpson’s rule with a grid of 500 points distributed 
in [0, ~1. The total computational time required was approximately 1 min and 
55 sec. The geometric approach utilized 114 values of E in the above ranges, with 
101 +Z values. The total computational time required was 19 sec. 

LiPPENDIX 

The derivative functions of z, in Eq. (28a), letting K = k/y, are 

d(W) ~ = 2[2K2 tanh LX - ol(l + K2)(2K2 + sech2 o)] tanh 01 cos kl 
dE K2(1 + K2)2 

sin kl 
+ K3(1 + K2)2 

{[2K2(K2 - 1) + (3K2 + 1) sech2 CX] tanh Q? 

- 2cuK2(1 + K2)(K2 + 1 - 2 tanh2 CX)], (A4 

dH - = -&- cosh2 CL( 1 + K-3[(K(l + K-3 - 2K-I) LI - K-l tanh2 a(1 + K-31 
dE 

2H -- 
KQ [ 

K cash” ar(sin k&p - A] + 2K-1 tanh 01 ( p COG T - I)] 

+ (cosh2 ~$1 + K2) - I)(a(p - d) cos kl + K-3 sin kl(1 - 2 sech2 a) 

- K-l tanh 01 K-l ( (p COG ; - 1) 

+ 2K-3 cos2 y sech2 cx + CY~ sin kl))], 64.2) 

where 

Q = [cosh2 (~(1 + K2) - l] [sin kl(p - d) + 2K-1 tanh 01 (p co9 G - I)], 

(A.3a) 
p = 2 + K-2 sech2 01, (A.3b) 

and 

d = 1 + P2 tanh2 01, (A.3c) 

and finally, 

dH 
z - 7 cos kl * H + (sin kl) dE . (A.41 
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